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Abstract—In this article, we present a novel user-centric
service provision for immersive communications (IC) in 6G to
deal with the uncertainty of individual user behaviors while
satisfying unique requirements on the quality of multi-sensory
experience. To this end, we propose a data-oriented framework
for network resource management, featuring personalized data
management that can support network modeling tailored to
different user demands. Our framework leverages the digital twin
(DT) technique as a key enabler. Particularly, a DT is established
for each user, and the data attributes in the DT are customized
based on the characteristics of the user. The DT functions,
corresponding to various data operations, are customized in the
development, evaluation, and update of network models to meet
unique user demands. A trace-driven case study demonstrates
the effectiveness of our framework in achieving user-centric IC
and the significance of personalized data management in 6G.

Index Terms—6G, immersive communications, user-centric
service provision, digital twin.

I. INTRODUCTION

Immersive communications (IC), envisioned to seamlessly
bridge the physical and virtual worlds, have been recognized
as a key use case of sixth-generation (6G) communication
networks by IMT-2030 due to their vast potentials [1]. In
education, entertainment, healthcare, and many other realms,
IC can have an immense impact that profoundly changes our
ways of living. The popularity of the Metaverse concept, as
a manifestation, is propelling the development of a lifelike
virtual world that provides users with a deep immersion in
social interactions. Meanwhile, the commercialization of wear-
able displays that can blend virtual content with the physical
world is unlocking immersive three-dimensional (3D) video
and audio experiences for more and more users. Considerable
progress has also been made in transmitting haptic information
over a communication link or network. Haptic devices such
as gloves can enrich the communication experiences of users
by supporting remote operations with haptic feedback. As a
result, IC will enable people in different corners of the world
to interact with each other and enjoy vivid visual, auditory,
and haptic experiences as if they are inches apart.
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To support multi-sensory immersive interactions among
users worldwide, transcending networks beyond 5G in all
performance metrics is essential [2]. Moreover, due to the
human user-centric characteristics of IC applications, 6G net-
works need to introduce new dimensions of capability to
meet the unprecedented demands of individual users, including
the following three aspects. First, in IC applications, even
a slight body movement of a user, e.g., a gaze shift, may
result in substantial network resource demand to maintain the
sense of immersion. Due to the inherent uncertainty of user
behaviors, networks must accurately characterize the impact of
individual user behaviors on their network resource demands.
Such characterization often relies on big data, thereby lack-
ing scalability when managing detailed data from a massive
number of users. Second, the prevailing quality of service
(QoS) and quality of experience (QoE) metrics, based on
a fixed set of data attributes, cannot accurately reflect user
satisfaction in IC. Since multi-sensory experience is suscepti-
ble to dynamic changes in the physical world, a fixed set of
data attributes as the QoE metrics may not precisely reflect
user satisfaction. Therefore, an adaptable set of QoE metrics,
based on the dynamic adjustment of data attributes, is essential
for accurately reflecting user satisfaction in IC applications.
Third, it is a consensus that artificial intelligence (AI) will
be foundational for IC, both in network management and
application development. Due to significant differences in user
behavior patterns, concerns arise about whether AI models,
e.g., deep neural networks (DNNs), trained on aggregated data
from many users can perform optimally for each individual
user [3]. Thus, networks need to support the customization of
AI models for IC users. Due to the aforementioned reasons,
understanding user behavior patterns, meeting unique user
demands, and thereby enabling user-centric service provision,
are expected in 6G networks to support IC.

In this article, we advocate a new data-oriented framework
for network resource management to achieve user-centric
immersive communications (UCIC) in 6G. Different from con-
ventional network management approaches which emphasize
the process of network modeling, the data-oriented framework
emphasizes the process of enhancing both the quality and the
quantity of network data1 through systematic and personalized
data management. Based on this framework, network modeling
can be customized for individual users and enable user-
centric service provision. We leverage the digital twin (DT)

1By network data, we refer to data related to communication networks,
encompassing infrastructure, network environments, and users.
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technique as a key enabler of the data-oriented framework [4].
By creating digital replicas for individual IC user devices,
we can customize user profiles to offer comprehensive user-
related data for personalized network modeling, including the
identification of personalized QoE metrics and characterization
of user-specific behaviors. Additionally, we define various DT
functions for data life-cycle management to adapt personalized
network modeling to the dynamic changes in both the physical
world and the user behaviors. A case study demonstrates
the effectiveness of our data-oriented framework via DT in
achieving UCIC.

II. USER-CENTRIC IMMERSIVE COMMUNICATIONS

In this section, we provide a brief introduction to immersive
communications and share our vision of UCIC.

A. Overview of Immersive Communications

IC refer to communication and networking technologies that
deliver lifelike experiences to users. Emerging IC applications
include extended reality (XR), holographic communication,
and haptic communication. We summarize features of IC
applications as follows.

• Multi-sensory: IC applications involve multi-sensory
perception, including visual, auditory, and haptic, each
corresponding to distinct sensations, e.g., temperature and
pressure. User devices serve as interfaces to transmit and
process the multi-sensory information involved in IC.

• Multi-module: IC requires a synergy of technologies,
e.g., device pose tracking and annotation rendering in the
case of augmented reality. A dedicated module for each
technology provides the corresponding functionality in
enabling immersive interactions. These modules require
network support in terms of communication, computing,
sensing, and so on.

• Human-in-the-loop: IC applications are inherently
human-in-the-loop since they depend on continuous, real-
time user interactions, where individual user behaviors
directly influence other users’ responses. This makes the
user experience heavily dependent on human factors.

• AI-native: IC in 6G will be tied to AI. Many mod-
ules, such as device pose prediction, are AI-driven. Fur-
thermore, 6G networks are envisioned to be AI-native,
featuring intelligent resource management for delivering
immersive experiences. For example, future 6G networks
can leverage generative AI to create virtual content on
user devices to reduce the communication load in content
delivery.

B. Features of UCIC and Challenges

UCIC is expected to provide users with immersive experi-
ences while accommodating the diverse characteristics of users
in IC applications. The core concept is to enable personalized
service provisioning for each individual user via network
resource management, including key aspects as follows.

• Adaptable user QoE: Since user satisfaction in IC
applications is influenced by dynamic changes in factors
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Fig. 1: Model-oriented (including mathematical and AI-based)
network resource management and a data-oriented framework.

such as user behaviors, UCIC should support continuous
and automated adjustment of user QoE metrics based on
the online analysis of user-related data. However, related
research independent of domain-specific knowledge a
priori remains in its early stages.

• User-customized AI: Given the differences in user be-
havior and user-perceived experience, UCIC should en-
sure that the AI-based models perform optimally for
individual users, rather than over a large set of users on
average. However, effectively leveraging data resources
within networks to guide the training, inference, and
updating of AI-based models for each individual user
remains a challenge.

• Scalable user characterization: Characterizing user de-
mands, e.g., quantifying the impact of user behaviors
on resource demands, is indispensable for on-demand
network resource management in UCIC. In practice,
differences among users may not lead to substantial
variations in resource demands. Moreover, conducting big
data analysis for each individual user can yield significant
data management overhead [5]. Identifying a proper set
of users to characterize their unique demands in various
network scenarios is essential yet challenging.

III. DATA-ORIENTED NETWORK RESOURCE
MANAGEMENT

In this section, we introduce the concept and the scope of
data-oriented network resource management for UCIC in 6G.

A. Concept of the Data-oriented Framework

The data-oriented concept originates from a field of AI,
i.e., data-centric AI, which emphasizes data engineering for
improving the performance of AI models [6]. Extending this
concept from AI to the communication network field, we ad-
vocate the new data-oriented framework for network resource
management to support UCIC.

Researchers in the communication network field usually
address network resource management problems by develop-
ing advanced network models, initially mathematical models
derived from observations. However, as networks become
increasingly complex, large-scale, and heterogeneous, and
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TABLE I: Data operation tasks in data-oriented network resource management.

Phase Data Operation Task Description

Network Model
Development

Data Preparation Identify potential data attributes and define the raw data collection process.
Data Cleaning Transform raw data into a format appropriate for modeling.
Data Reduction Reduce feature dimension or sample size to lower modeling complexity.

Data Augmentation Generate variations of the existing data without additional collection.
Network Model

Evaluation
In-distribution Data Generation Construct datasets for fine-grained in-distribution evaluation.

Out-of-distribution Data Generation Generate out-of-distribution data to evaluate models in unexpected scenarios.

Network Model
Update

Data Valuation Value the contribution of data to the modeling performance.
Data Quality Assurance Continuously measure, monitor, and ensure data quality in network management.
Resource Optimization Adjust network resources allocated for data operation tasks.

services demand more diversified, developing accurate closed-
form mathematical models becomes infeasible [7]. With the
advent of AI, researchers can now extract information from
massive network data using AI techniques, enabling network
resource management decision making without relying on
closed-form mathematical network models. In this context, AI
can play the role of a network model in network resource
management.

As represented by the red blocks and arrows in Fig. 1,
model-oriented network resource management focuses on de-
veloping mathematical or AI-based network models to ex-
tract information from network data for optimizing network
resource management. Model-oriented network resource man-
agement may struggle to address issues such as missing and
biased data, and cannot provide an adequate set of network
data in terms of data volume, granularity, diversity, and other
factors. Therefore, we propose a data-oriented framework
that emphasizes systematic data management to enhance the
quality and quantity of network data, thereby facilitating
network modeling through mathematical, AI-based, or hybrid
methods [7]. The proposed framework is represented by the
blue blocks and arrows in Fig. 1.

B. Scope of the Data-oriented Framework

The data-oriented framework can support UCIC in two
aspects: 1) Enhancing network data, which involves sys-
tematically improving the data quality across all phases of
network modeling; 2) Expanding network data, which involves
introducing data life-cycle management to identify and utilize
untapped data resources in existing network management. We
elaborate on these two aspects via data operation tasks in three
phases of network modeling, i.e., development, evaluation,
and update phases. Each data operation task deals with a
specific data-related issue. In Table I, we list typical data
operation tasks in the scope of data-oriented network resource
management.

1) Network Model Development Phase: Developing net-
work models, e.g., a QoE model, is fundamental for optimizing
network resource management. In this phase, data operation
tasks can be designed to prepare high-quality data to facilitate
the development of network models with comprehensive in-
formation. For example, in IC, selecting an appropriate set of
data attributes for identifying user QoE and defining the proper
granularity of data samples can improve the accuracy of QoE-
based resource demand prediction. Such data operation tasks

can also be based on mathematical network models, which can
provide a priori knowledge for efficient data management.

2) Network Model Evaluation Phase: Succeeding network
model development, the evaluation phase quantitatively char-
acterizes the performance of network resource management
decisions based on the developed network models. In this
phase, data operation tasks focus on enhancing data quantity
by generating additional data samples with diverse features.
For example, to evaluate whether a data traffic model devel-
oped from aggregated data of multiple user devices meets
the service demand of each individual user, data operation
tasks in this phase should generate user-specific datasets to
evaluate this user-agnostic model. These tasks support fine-
grained evaluation of both closed-form mathematical network
models and implicit AI-based network models from a data
perspective, thereby guiding decision making for user-centric
service provision.

3) Network Model Update Phase: Due to the continuous
changes of network environments, user behaviors, and other
factors, regularly refining the network models for network
resource management is necessary. Accordingly, the data
required for updating those models should be continuously
collected. The data operation tasks in the update phase concen-
trate on processing data for information extraction and timely
triggering network model updates from a data perspective [8].
For example, by establishing quantitative measurements to
characterize the impact of the data samples used for decision
making on network performance, new factors, e.g., data distri-
bution drift, can be introduced to trigger updates of AI-based
network models used for network optimization.

IV. DIGITAL TWIN AS AN ENABLER

In this section, we introduce our data-oriented framework,
leveraging the DT technique as its enabler. DTs serve as user
profiles for individual user devices, facilitating the analysis of
user data to enable UCIC.

A. Advantages of Digital Twins

For data-oriented network resource management, we adopt
the DT technique as a key enabler for the following benefits.

• Increase of available data attributes: From the data
quantity perspective, the DT technique can enrich the
data attributes available for optimizing network resource
management by establishing digital replicas of network
entities. For example, to comprehensively depict the



4

!"#$%&'

()*)+","*#-

.*#"&/)0"

1!(.2

34"&-5"670"34"&-5"670"34"&-5"670"

358358358

!"#$%&'

9%*#&%::"&

!"#$%&' (")%*&+" ,-.-/"0".# 1"+2)2%.)

!"#$%&' ()#) *%+",-./

5)#)-()*)+","*#-(%;<:"-15((2

!"#$%"&'()" *+,%-$.,/0&1,$- !/-/&2--3$4+-"

25&60/77"7

8.7"

'3/%9$,:

63)/; 5")3"7",-/-$., .<&*3/="7

>+=4"3&.<&1)0./?"?&*3/="7

@.?"0&AB$-%;$,:&!"%$7$.,

1)0$,9&!/-/&'3/<<$%&C./?

@.?"0$,:&2%%+3/%(

D"(&*3/="&5/-$.

5",?"3$,:

!
=0>",)

34"&-5"670"34"&-5"6 34"&-5"670"34"&-5"6

358 358

!"#$%& !"#$%& !"#$%&

?7;7&"0#7%*):-=@*0>&%*7A)#7%*-1?7=@*02

Fig. 2: The conceptual architecture of data-oriented network resource management framework via UDTs.

user characteristics, DTs established for individual user
devices should incorporate application-specific data at-
tributes, such as users’ multi-sensory QoE requirements
and pose variation patterns, which have not been ade-
quately leveraged in existing network resource manage-
ment [9].

• Customizable data updates: From the data quality
perspective, the DT technique supports flexible updating
mechanisms for different data attributes, since the real-
time synchronization between DTs and their correspond-
ing physical objects ensures the availability of high-
quality data for updates, allowing for dynamic adjust-
ments of data quality as needed. As a result, the DT
technique can facilitate the network model adaptation by
adjusting network data quality, such as feature dimension
and granularity.

• End-to-end evaluation capabilities: From the data man-
agement perspective, the DT technique enables end-to-
end evaluation of how data operations impact network
performance or use satisfaction through network model-
ing and network resource management decision making.
This is because DTs can receive feedback from physical
objects, such as reports from user devices on delay per-
formance, which is influenced by both network resource
management and data operations. As a result, the DT
technique introduces the possibility of guiding the joint
management of network data and network resources.

• Data-model integration: The DT technique facilitates
the integration of network data and models. Mathematical
network models can be used to generate network data
via emulating various network scenarios, while network
data can be used to derive network models via extracting
patterns. The DT technique can incorporate mathematical
and AI-based methods in network resource management.

B. Conceptual Architecture

Toward user-centric service provision, our data-oriented
framework concentrates on establishing user DTs for individ-
ual user devices and integrating user-related data management

functionalities into network resource management. Building
on our previous research [7], we present the conceptual
architecture of our framework in Fig. 2. Rather than simply
collecting data, the essence of our framework is developing a
data model, which organizes data and effectively supports the
extraction of information [10], [11]. We refer to the process
of customizing a data model to organize and process network
data used for network resource management as network data
modeling, illustrated in the dashed red block in Fig. 2. The
four primary components of the architecture are outlined into
follows:

• User Digital Twin (UDT): We propose establishing a
digital replica, termed UDT, for each individual user
device under consideration. Within a UDT, we define
a customizable schema that describes the relationships
among a set of data attributes associated with the corre-
sponding user device for a target application [10], such as
device ID, device type, and user’s QoE requirements. The
data attributes are intended to efficiently structure data
samples for providing network resource management with
explicit or implicit information. In addition, the schema
specifies a data structure for efficient user data organiza-
tion. Fig. 2 shows a reference schema customized for an
augmented reality device to support device pose tracking.
The schema organizes data attributes using a hierarchical
data structure and specifies different data update mech-
anisms for different data attributes [9]. To ensure UDT
feasibility, the schema should constrain data samples from
a network perspective. For example, the granularity of
channel condition data should align with that recorded
by the access point. Additionally, privacy issues, such as
unconscionable behavioral profiling and improper uses of
user profiles, should be addressed when managing data
containing user preference information [1].

• Data Management Module (DMM): The DMM is
responsible for executing various data operation tasks as
mentioned in Subsection III-B. Specifically, within the
DMM, we propose a set of UDT operation functions
(UDTOFs), each corresponding to a specific data oper-



5

ation task, as exemplified in Table I. Data exchange be-
tween different UDTOFs is designed to support network-
level data engineering while reducing redundant data
operations. We classify UDTOFs into three categories: I)
functions contributing to the definition of schemas; II)
functions enabling bidirectional synchronization between
UDTs and user devices; and III) functions facilitating
the development, evaluation, and updating of network
models.

• Bidirectional Synchronization (BiSync): The BiSync
implements the synchronization between each user device
and its corresponding UDT. From a user device to its
UDT, there is a data flow starting from raw data collection
at user devices, followed by data processing at the DMM,
as indicated by the solid gray arrows in Fig. 2. In the other
direction, the synchronization is not simply transmitting
data from a UDT to its corresponding user. Instead, UDTs
influence network modeling and the decision making of
network resource management, which in turn affects user
devices. We indicate the synchronization in this direction
with dashed gray arrows in Fig. 2.

• Network Management Interface (NMI): The NMI
bridges data management and network resource manage-
ment, with two primary functions. First, by utilizing the
information from UDTOFs in the DMM, the NMI is
responsible for the development, evaluation, and updating
of network models, such as closed-form Poisson models
or inherent network models contained in well-trained
DNNs. Second, based on the network models, the NMI
offers comprehensive information, e.g., estimated user
QoE, for making network resource management deci-
sions. These two functions may be integrated, particularly
in AI-based approaches to network resource management
where DNNs directly output the decisions.

Via the above designs, the schema for a UDT organizes the
relationships among the associated data attributes, serving as
a tool to capture the static characteristics of the corresponding
user device. Meanwhile, UDTOFs in the DMM define rules
of analyzing time-varying data values, serving as tools to
capture the dynamic characteristics of the user device. Since
each UDTOF can be mathematical, AI-based, or hybrid, the
NMI can flexibly coordinate network data modeling with
network resource management decision making, especially via
emerging hybrid-model-data-driven methods.

C. Adaptive Network Data Modeling

Here, we discuss data life-cycle management for adapting
the data model to network dynamics, thereby facilitating adap-
tive network resource management. We present the workflow
corresponding to the development, evaluation, and update of
the network model, which were briefly introduced in Subsec-
tion III-B.

1) Development: In this phase, UDTOFs support network
model development from the schema definition and data oper-
ation perspectives. To ensure the UDTs contain comprehensive
data attributes while avoiding high costs from large database
administration such as data warehouse, we consider a two-tier

database as shown in Fig. 3. UDTOFs define the schema of a
large database for low-redundancy data management across the
entire network. Following this, they define the initial schemas
of small databases for UDTs and enable UDTs to efficiently
leverage the large database for ephemeral and customizable
data management tailored to individual user devices. Since
UDTOFs determine the overall set of data attributes available
for QoE modeling, they are crucial for user QoE satisfaction.
Thus, we can introduce data mining, e.g., association rule
learning or ablation study [12], into UDTOFs to precisely
identify users’ specific QoE metrics and corresponding data
attributes for QoE modeling.

UDTOFs concentrate on preparing high-quantity data to
enhance the capture of information, thereby facilitating the
development of network models, particularly for AI-based
QoE modeling. For example, they support QoE modeling
by uncovering latent relationships between allocated radio
resources and the resulting device pose tracking errors in
XR [9]. Typical data operation tasks for UDTOFs in this phase
are outlined in Table I. Data reduction enhances efficiency
and accuracy in network model development by removing
irrelevant or redundant data, while data augmentation improves
the generalization capabilities of network models by enhancing
data diversity.

2) Evaluation: UDTOFs in this phase mainly support the
fine-grained evaluation of network model performance from
two perspectives. First, by integrating mathematical network
models with network data, they can emulate atypical net-
work scenarios not captured during the development phase,
thereby evaluating the robustness of a network model. Sec-
ond, UDTOFs can evaluate the performance of individual
user devices under resource management decisions based on
a general network model, e.g., a user-averaged data traffic
model. Techniques such as generative AI or data slicing,
which partition datasets involving multiple user devices into
datasets specific to each user device [13], can be applied for
this purpose. From these two aspects, UDTOFs can exploit
additional network data to increase the granularity of network
model evaluation, thereby facilitating fine-grained network
resource management.

3) Update: In this phase, UDTOFs facilitate updating both
network models and UDTs. Regarding network model updates,
a conventional approach is to trigger reactive updates by
continuously monitoring and analyzing network performance
data, which can be viewed as a downstream analysis of
network modeling. Using UDTs, one can update network
models through proactive assessment of the quality of the
data input into the network models, representing an upstream
analysis. Specifically, new metrics including the data quality of
a set of data samples, e.g., data distribution shifts, or the value
of individual data samples, e.g., the Shapely value, can be
employed to proactively initiate network model updates [14].
This can address certain issues related to network modeling at
an early stage.

Since UDTOFs are centered on UDTs, the evolution of
UDTs, specifically UDT schema update, becomes necessary to
capture the changing properties of user devices using real-time
data. To this end, the tasks of data collection, transformation,
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Fig. 3: The illustration of data life-cycle management centered on UDTs.

and analysis should be properly defined for UDTOFs to ensure
that the updated schema provides comprehensive information
to update network models. Given the additional consumption
of network resources, e.g., data storage and computing power,
associated with UDTOFs, it is essential to strike a balance
between the costs of UDTOFs and the resulting network
performance gains.

V. CASE STUDY

In this case study, we show the effectiveness of our UDT-
based framework in supporting user-centric virtual content
delivery for the IC application of mobile augmented reality
(MAR) [9], [15].

A. Considered Scenario

In the considered scenario, MAR users within the coverage
of an AP move freely with six degrees of freedom. An edge
server deployed at the AP delivers volumetric videos as virtual
content to MAR devices, allowing seamless integration with
the real-world environment surrounding the MAR users. Each
frame of a volumetric video is composed of a dense point
cloud, posing a challenge in meeting the stringent latency
requirement for MAR. A classic approach involves spatially
segmenting the point cloud in each frame into multiple tiles
and proactively delivering only the tiles that will likely fall
within the field of view of an MAR user, according to the
prediction of the MAR device pose. As the edge server needs
to collect data related to device poses for pose prediction,
the network should allocate sufficient uplink communication

resources to ensure timely pose data collection. We use a
public dataset that records the pose traces of 40 users watching
a volumetric video (https://github.com/Yong-Chen94/6DoF
Video FoV Dataset, titled Longdress).

B. Performance Evaluation

To validate the effectiveness of the proposed data-oriented
framework, this case study focuses on QoE-oriented service
provision for MAR since QoE plays a critical role in assessing
the level of user immersion in MAR.

1) User QoE Modeling: To achieve satisfactory QoE, we
establish UDTs to help build QoE models that map from net-
work resource management decisions to corresponding MAR
users’ QoE. We adopt a hierarchical data structure for the
user profile in each UDT, as outlined in our prior work [9].
In addition to device category, user ID, and timestamps, the
user profile incorporates two key data attributes for QoE
modeling. First, the virtual content hit rate (VCHR) is used
as a QoE metric, representing the ratio of overlapped point
cloud between the delivered tiles and the rendered tiles, since
it impacts user immersion in MAR [15]. Second, the pose
data collection frequency is employed to represent a network
resource management decision, assuming an identical uplink
resource consumption for each pose data collection. Following
this data structure, data samples are prepared for modeling the
relation between the pose collection frequency and the user
QoE, i.e., the VCHR. The third-order polynomial regression
is used to develop a QoE model based on the data samples in
each UDT.

https://github.com/Yong-Chen94/6DoF_Video_FoV_Dataset
https://github.com/Yong-Chen94/6DoF_Video_FoV_Dataset
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Fig. 4: Effectiveness of UDTs in supporting virtual content
delivery for MAR.

In Fig. 4a, we show the VCHR with different pose collection
frequencies. For comparison, we adopt a network slicing-based
management approach commonly employed in 5G networks,
as a baseline, which builds a single user-agnostic QoE model
based on the data samples collected from all MAR users.
The VCHRs of all users increase with the pose collection
frequency. Nevertheless, the trend varies drastically with users.
For example, the VCHR of User #29 is lower and increases
more drastically than User #30. This is because the users
exhibit different initial poses and different patterns in changing
their poses in watching the volumetric video. In Fig. 4a, we
show the results of the user-agnostic model to characterize
the relation. The user-agnostic model exhibits a significant
error in modeling the QoE of individual users, especially
for User #30. By comparison, establishing UDTs for user-
specific QoE modeling enhances the QoE modeling accuracy.
Leveraging user QoE information, our framework can be
extended to QoE-oriented service provision for a broader range

of 6G applications beyond IC.
2) MAR User Selection for UDT Establishment: While

establishing a UDT benefits user-specific QoE modeling, the
associated costs cannot be overlooked. Specifically, the DMM
must consume network resources to support data operations
for developing and using a QoE model. Therefore, it is
important to select an appropriate set of MAR users for
UDT establishment to improve QoE modeling accuracy while
satisfying network resource constraints. Given the number of
MAR users to be selected for UDT establishment, we compare
two approaches to MAR user selection for UDT establishment,
i.e., (i) random: randomly selecting the MAR users; and (ii)
minimum modeling-error: calculating the modeling error for
each user when the user-agnostic model is adopted for this
MAR user and then selecting the users with the highest
modeling errors. For users without UDTs, the user-agnostic
QoE model is applied.

In Fig. 4b, given different numbers of UDTs established, we
show the QoE modeling error averaged over all MAR users.
When the number of UDTs is set to 0 and 40, UDTs are
established for none and all of the MAR users, respectively.
With the UDTs, the average modeling error largely decreases.
To enhance scalability, both approaches can reduce signaling
overhead and energy consumption by selecting user devices for
UDT establishment. We observe that the minimum modeling-
error approach achieves higher modeling accuracy. Based on
this observation, properly balancing performance gains with
the associated costs of UDT establishment is crucial for
optimizing 6G networks.

VI. CONCLUSION

In this article, we have introduced a data-oriented network
resource management framework to facilitate user-centric im-
mersive communications. The framework can support per-
sonalized data management for user-centric service provi-
sion by leveraging the DT technique. Our research lays the
groundwork for integrating data management and resource
management to trailblaze network automation in 6G. In the
future, we will investigate closed-loop automated network
resource management to enable scalable user-centric service
provision for immersive communications.
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