
Double Deep Q-Learning for Autonomous Cyber
Defense Agent Training

Ethan Morphew and Jie Gao
School of Information Technology, Carleton University, Ottawa, ON, Canada, K1S 5B6

Emails: {ethanmorphew@cmail.carleton.ca, jie.gao6@carleton.ca}

Abstract—This poster presents a DDQN-based approach for
training an agent to defend networks against attackers of differ-
ent types. By training the agent against adversaries with diverse
strategies, we achieve consistently strong performance in network
defense. Evaluations using the TTCP CAGE 2 challenge environ-
ment show that our approach achieves comparable or superior
rewards to those on the global leaderboard of the challenge. In
particular, our agent outperformed the “Ensembled DDDQN”
and “PPO w/ RE3 Exploration” approaches by approximately
30% in the meander 100-step reward category and 11% in the
b-line 100-step reward category, respectively.

Index Terms—Autonomous Cyber Defense, Double Deep Q-
Learning, Blue Agent Training, TTCP CAGE Challenge

I. INTRODUCTION

Artificial intelligence (AI) is becoming an essential tool
for improving the detection and response to cybersecurity
threats [1]. Deep-reinforcement learning (DRL), which enables
an agent to continuously learn from experience and dynami-
cally adapt to evolving threats in a complex environment [2],
has attracted extensive attention for autonomous cyber de-
fense [3]. A defense (a.k.a. “blue”) agent trained using DRL
responds to attacks in real time, enhancing security while
reducing the need for human intervention.

Double Deep Q-Learning (DDQN), an off-policy DRL
method leveraging separate target and policy neural networks
to decompose action selection and action evaluation, offers key
advantages such as stability, sample efficiency, and low com-
putational requirement [4]. Designed specifically for discrete
action spaces, DDQN is well-suited for cyber defense appli-
cations, where decisions are typically represented as discrete
variables [5]. In this poster, we present DDQN-based cyber
defense agent training, evaluate it in a simulated environment,
and demonstrate its performance in comparison to leading AI-
based training approaches.

II. NETWORK SCENARIO AND AGENT DESIGN

An example network scenario is illustrated in Fig. 1. The
network includes user and operational hosts, enterprise servers,
and an operational server. A blue agent (defender) and a red
agent (attacker) exist in the network. The red agent’s objective
is to compromise the operational server, while the blue agent’s
primary goal is to defend it. Additionally, the blue agent also
protects the hosts and enterprise servers.

The DDQN algorithm is tasked with analyzing the state
and choosing a course of action that will generate the highest
reward. To achieve the goal, the DDQN determines Q-values,
which are the expected reward for a given state-action pair.
The Q-value is updated as follows [6]:

Fig. 1: Network Scenario for Cyber Defense Agent Training.

Q(st, at;θt) = rt+1+γQ
(
st+1, argmax

a
Q(st+1, a;θt);θ

−
t

)
where θt and θ−

t are weights of the policy and the target
neural networks, respectively, rt+1 is the immediate reward
transitioning from state st into state st+1 as a result of action
at, and γ is the discount factor.

In our DDQN-based agent training, we exclude actions that
rely on prior knowledge of specific red agent strategies, such as
pre-placing decoys along the known path of the red agent. By
excluding these actions, we can more realistically simulate an
unexpected attack on the network with the additional benefit of
speeding up the training by limiting the number of state-action
combinations. Our agent is trained with the same DDQN on
different types of red agents, randomly selecting the type of
the red agent at the beginning of each episode. This creates a
blue agent that can effectively defend against different types
of red agents rather than specializing against one specific type.

III. EXPERIMENT SETUP

To test our DDQN-based approach for training an au-
tonomous cyber defense agent, the TTCP CAGE 2 environ-
ment designed with the purpose of testing blue agents for
network defense was used [7]. As shown in Fig. 1, hosts
are split into 3 networks, with subnet 1 holding the user
hosts, subnet 2 holding the enterprise servers, and subnet 3
holding the operational hosts and server. The red agent in the
environment is either of two types with different behaviors.
The meander agent is representative of an attacker with no
prior knowledge of the network and will seek to explore the
network and gain access to a number of hosts. The b-line agent
represents an attacker with intimate knowledge of the network
topology and takes a direct path toward the operational server.

From the perspective of the blue agent, the simulated
environment is represented by a 52-bit state space and 145
discrete actions representing all actions possible on all hosts.



TABLE I: Hyperparameters used for training

Hyperparameter Value
Replay memory 25000
Discount factor (γ) 0.99
Epsilon decay 0.0002
Target network update rate (τ ) 0.005
Learning rate (α) 0.0001

Fig. 2: Convergence of the DDQN in training the blue agent.

In our approach, we exclude one of the categories of actions,
decoys, which reduces our agent’s action space to 40 actions, 3
per host. The state space represents the blue agent’s knowledge
of each host, including current red agent action taking place
on the host that the blue agent is aware of and whether or
not the host has been compromised. The blue and red agents
each take a single action per step, with actions being taken
simultaneously at the end of the step. In each step, the blue
agent chooses from the 40 actions with the following being
the basic action types on each host i) analyze, which aims to
detect the presence of the red agent, if any, within a host, ii)
remove, which removes the red agent, with a smaller penalty,
but only if the red agent has not achieved root access, or iii)
restore, which can remove the red agent with a larger penalty.
An episode, which consists of 30, 50, or 100 steps, simulates
an attack on the network for a given duration.

IV. EXPERIMENT RESULTS AND COMPARISONS

Next, we demonstrate the performance of our DDQN-
trained agent in comparison to several benchmarks. The hy-
perparameters used for training are given in Table I. The
benchmark blue agents selected for comparison similarly
avoided actions requiring prior knowledge of specific red agent
policies (e.g., decoy deployment based on knowledge of the
b-line agent’s normal path), which is less applicable to real-
world scenarios. We selected the“PPO w/RE3 Exploration”
agent, ranked 16th in the CAGE 2 challenge leaderboard and
the “ensemble DDDQN” agent, ranked 17th, as the main
benchmark. A heuristic agent and a random agent provided by
the challenge were also compared. The 100-step episode length
was selected as it represents a more realistic attack scenario
with a sustained red agent effort to impact the operational host.
The reward is always negative, as it characterizes the negative
impact of the actions of the red agent on the network.

TABLE II: Performance of agents in 100-step reward

Agent B-line 100-step Meander 100-step
Our Agent -48.12 -48.10
PPO w/ RE3 Exploration -54.01 -28.69
Ensembled DDQN -23.96 -67.89
CCS Heuristic -184.34 -192.63
CCS Random -726.92 -566.41

Fig. 2 shows the convergence of the DDQN algorithm in
training. The blue agent trained with the DDQN learned to take
effective defense actions in a relatively short period of time.
Specifically, the reward converges within only 5000 episodes
of 100 steps, and the average 100-step reward improves from
approximately -350 for both b-line or meander red agents
before training to -48.12 and -48.10 for b-line and meander
red agents, respectively.

Table II compares the performance of the blue agent trained
by our DDQN algorithm with the benchmark agents. Each
value in the table represents the 100-step reward averaged over
1000 episodes. Unlike the two AI-based benchmark agents,
which perform significantly better for either the meander or
the b-line red agent, our DDQN performs consistently for
both types of the red agents. This is a result of training the
same DDQN against both types of red agents. By randomly
selecting the type of red agent on a per-episode basis, we force
our agent to search for a strategy that performs well against
both types without needing the DDQN to discern between red
agent types. Notably, with the decoy actions excluded from
the action space, our agent greatly outperforms the random
agent even before the training.

V. CONCLUSIONS

We have demonstrated the potential of DDQN for training
an cyber defense agent. In a modest number of training
episodes, our agent was able to quickly discover and exploit
a strategy and significantly improve the reward. The choice of
randomly selecting the red agent type in training led to a more
consistent performance of the trained blue agent against the
meander and b-line agents, as compared to the two AI-based
benchmarks. A future direction is to identify whether actions
beyond decoys could be removed to further restrict the action
space while improving the defense performance.

REFERENCES

[1] N. E. Fard, R. R. Selmic, and K. Khorasani, “A Review of Techniques
and Policies on Cybersecurity Using Artificial Intelligence and Rein-
forcement Learning Algorithms,” IEEE Technol. Soc. Mag., vol. 42, no.
3, pp. 57-68, Sept. 2023.

[2] A. A. Hammad, et al. “Deep Reinforcement Learning for Adaptive Cyber
Defense in Network Security,” ACM AICCONF’24, New York, USA,
2024, pp. 292–297.

[3] I. S. Thompson, A. Caron, C. Hicks, and V. Mavroudis, “Entity-
based Reinforcement Learning for Autonomous Cyber Defence,” ACM
AutonomousCyber’24 Workshop, New York, USA, 2024, pp. 56–67.

[4] H. Kheddar, D. W. Dawoud, A. I. Awad, Y. Himeur and M. K. Khan,
”Reinforcement-Learning-Based Intrusion Detection in Communication
Networks: A Review,” IEEE Commun. Surv. Tutor., early access.

[5] N. D. L. Fuente and D. A. V. Guerra, “A Comparative Study
of Deep Reinforcement Learning Models: DQN vs PPO vs A2C,”
arXiv:2407.14151, 2024.

[6] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning”, AAAI’16, Phoenix, USA, 2016, pp. 2094-2100.

[7] “TTCP CAGE Challenge 2” [Online]. Available at: https://github.com/
cage-challenge/cage-challenge-2


